Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.500
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 156-159, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605614

RESUMO

Objective: The distribution of the photon energy spectrum in isocenter plane of the medical linear accelerator and the influence of secondary collimator on the photon energy spectrum are studied. Methods Use the BEAMnrc program to simulate the transmission of the 6 MeV electrons and photons in 5 cm×5 cm,10 cm×10 cm,15 cm×15 cm and 20 cm×20 cm fields in treatment head of the medical linear accelerator, where a phase space file was set up at the isocenter plane to record the particle information passing through this plane. The BEAMdp program is used to analyze the phase space file, in order to obtain the distribution of the photon energy spectrum in isocenter plane and the influence of secondary collimator on the photon energy spectrum. Results: By analyzing the photon energy spectrum of a medical linear accelerator with a nominal energy of 6 MV, it is found that the secondary collimator has little effect on the photon energy spectrum; different fields have different photon energy spectrum distributions; the photon energy spectrum in different central regions of the same field have the same normalized distribution. Conclusion: In the dose calculation of radiation therapy, the influence of photon energy spectrum should be carefully considered.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Método de Monte Carlo , Fótons/uso terapêutico , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
Phys Med Biol ; 69(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38537301

RESUMO

Thein vivoevolution of radiotherapy necessitates innovative platforms for preclinical investigation, bridging the gap between bench research and clinical applications. Understanding the nuances of radiation response, specifically tailored to proton and photon therapies, is critical for optimizing treatment outcomes. Within this context, preclinicalin vivoexperimental setups incorporating image guidance for both photon and proton therapies are pivotal, enabling the translation of findings from small animal models to clinical settings. TheSAPPHIREproject represents a milestone in this pursuit, presenting the installation of the small animal radiation therapy integrated beamline (SmART+ IB, Precision X-Ray Inc., Madison, Connecticut, USA) designed for preclinical image-guided proton and photon therapy experiments at University Proton Therapy Dresden. Through Monte Carlo simulations, low-dose on-site cone beam computed tomography imaging and quality assurance alignment protocols, the project ensures the safe and precise application of radiation, crucial for replicating clinical scenarios in small animal models. The creation of Hounsfield lookup tables and comprehensive proton and photon beam characterizations within this system enable accurate dose calculations, allowing for targeted and controlled comparison experiments. By integrating these capabilities,SAPPHIREbridges preclinical investigations and potential clinical applications, offering a platform for translational radiobiology research and cancer therapy advancements.


Assuntos
Fótons , Terapia com Prótons , Radioterapia Guiada por Imagem , Fótons/uso terapêutico , Animais , Radioterapia Guiada por Imagem/métodos , Terapia com Prótons/métodos , Método de Monte Carlo , Prótons , Camundongos
3.
Comput Biol Med ; 173: 108334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520919

RESUMO

Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.


Assuntos
Hipóxia , Fótons , Humanos , Fótons/uso terapêutico , Carbono
4.
Semin Radiat Oncol ; 34(2): 218-228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508786

RESUMO

FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.


Assuntos
Lesões por Radiação , Radioterapia (Especialidade) , Sarcoma , Humanos , Animais , Cães , Camundongos , Sarcoma/radioterapia , Fótons/uso terapêutico , Hipofracionamento da Dose de Radiação , Dosagem Radioterapêutica
6.
Biomed Phys Eng Express ; 10(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306972

RESUMO

Objectives.In an addendum to AAPM TG-51 protocol, McEwenet al, (DOI:10.1118/1.4866223) introduced a new factorPrpto account for the radial dose distribution of the photon beam over the detector volume mainly in flattening filter free (FFF) beams.Prpand its extension to non-FFF beam reference dosimetry is investigated to see its impact in a clinical situation.Approches.ThePrpwas measured using simplified version of Sudhyadhomet al(DOI:10.1118/1.4941691) for Elekta and Varian FFF beams with two commonly used calibration detectors; PTW-30013 and Exradin-A12 ion chambers after acquiring high resolution profiles in detectors cardinal coordinates. For radial dose correction factor, the ion chambers were placed in a small water phantom and the central axis position was set to center of the sensitive volume on the treatment table and was studied by rotating the table by 15-degree interval from -90 to +90 degrees with respect to the initial (zero) position.Main results.The magnitude ofPrpvaries very little with machine, detector and beam energies to a value of 1.003 ± 0.0005 and 1.005 ± 0.0005 for 6FFF and 10FFF, respectively. The radial anisotropy for the Elekta machine with Exradin-A12 and PTW-30013 detector the magnitudes are in the range of (0.9995±0.0011 to 1.0015±0.0010) and (0.9998±0.0007 to 1.0015±0.0010), respectively. Similarly, for the Varian machine with Exradin-A12 and PTW-30013 ion chambers, the magnitudes are in the range of (1.0004±0.0010 to 1.0018±0.0018) and (1.0006±0.0009 to 1.0027±0.0007), respectively.Significance.ThePrpis ≤ 0.3% and 0.5% for 6FFF and 10FFF, respectively. The radial dose correction factor in regular beams also does not impact the dosimetry where the maximum magnitude is ±0.2% which is within experimental uncertainty.


Assuntos
Fótons , Radiometria , Fótons/uso terapêutico , Radiometria/métodos , Imagens de Fantasmas , Calibragem , Incerteza , Carmustina
7.
Radiother Oncol ; 194: 110157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367939

RESUMO

BACKGROUND AND PURPOSE: Ependymoma is the third most frequent childhood braintumor. Standard treatment is surgery followed by radiation therapy including proton therapy (PBT). Retrospective studies have reported higher rates of brainstem injury after PBT than after photon therapy (XRT). We report a national multicenter study of the incidence of brainstem injury after XRT versus PBT, and their correlations with dosimetric data. MATERIAL AND METHODS: We included all patients aged < 25 years who were treated with PBT or XRT for intracranial ependymoma at five French pediatric oncology reference centers between 2007 and 2020. We reviewed pre-irradiation MRI, follow-up MRIs over the 12 months post-treatment and clinical data. RESULTS: Of the 83 patients, 42 were treated with PBT, 37 with XRT, and 4 with both (median dose: 59.4 Gy, range: 53­60). No new or progressive symptomatic brainstem injury was found. Four patients presented asymptomatic radiographic changes (punctiform brainstem enhancement and FLAIR hypersignal), with median onset at 3.5 months (range: 3.0­9.4) after radiation therapy, and median offset at 7.6 months (range: 3.7­7.9). Two had been treated with PBT, one with XRT, and one with mixed XRT-PBT. Prescribed doses were 59.4, 55.8, 59.4 and 54 Gy. CONCLUSION: Asymptomatic radiographic changes occurred in 4.8% of patients with ependymoma in a large national series. There was no correlation with dose or technique. No symptomatic brainstem injury was identified.


Assuntos
Neoplasias Encefálicas , Tronco Encefálico , Ependimoma , Terapia com Prótons , Humanos , Ependimoma/radioterapia , Ependimoma/diagnóstico por imagem , Terapia com Prótons/efeitos adversos , Estudos Retrospectivos , Feminino , Masculino , Criança , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Adolescente , Pré-Escolar , Tronco Encefálico/efeitos da radiação , Tronco Encefálico/diagnóstico por imagem , Adulto Jovem , França , Fótons/uso terapêutico , Fótons/efeitos adversos , Lesões por Radiação/etiologia , Imageamento por Ressonância Magnética , Lactente , Dosagem Radioterapêutica
8.
Sci Rep ; 14(1): 4510, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402259

RESUMO

Grid therapy recently has been picking momentum due to favorable outcomes in bulky tumors. This is being termed as Spatially Fractionated Radiation Therapy (SFRT) and lattice therapy. SFRT can be performed with specially designed blocks made with brass or cerrobend with repeated holes or using multi-leaf collimators where dosimetry is uncertain. The dosimetric challenge in grid therapy is the mystery behind the lower percentage depth dose (PDD) in grid fields. The knowledge about the beam quality, indexed by TPR20/10 (Tissue Phantom Ratio), is also necessary for absolute dosimetry of grid fields. Since the grid may change the quality of the primary photons, a new [Formula: see text] should be evaluated for absolute dosimetry of grid fields. A Monte Carlo (MC) approach is provided to resolving the dosimetric issues. Using 6 MV beam from a linear accelerator, MC simulation was performed using MCNPX code. Additionally, a commercial grid therapy device was used to simulate the grid fields. Beam parameters were validated with MC model for output factor, depth of maximum dose, PDDs, dose profiles, and TPR20/10. The electron and photon spectra were also compared between open and grid fields. The dmax is the same for open and grid fields. The PDD with grid is lower (~ 10%) than the open field. The difference in TPR20/10 of open and grid fields is observable (~ 5%). Accordingly, TPR20/10 is still a good index for the beam quality in grid fields and consequently choose the correct [Formula: see text] in measurements. The output factors for grid fields are 0.2 lower compared to open fields. The lower depth dose with grid therapy is due to lower depth fluence with scatter radiation but it does not impact the dosimetry as the calibration parameters are insensitive to the effective beam energies. Thus, standard dosimetry in open beam based on international protocol could be used.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Fótons/uso terapêutico , Elétrons , Imagens de Fantasmas , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Phys Med Biol ; 69(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385258

RESUMO

Objective. Prompt gamma photon, prompt x-ray, and induced positron imaging are possible methods for observing a proton beam's shape from outside the subject. However, since these three types of images have not been measured simultaneously nor compared using the same subject, their advantages and disadvantages remain unknown for imaging beam shapes in therapy. To clarify these points, we developed a triple-imaging-modality system to simultaneously measure prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation to a phantom.Approach. The developed triple-imaging-modality system consists of a gamma camera, an x-ray camera, and a dual-head positron emission tomography (PET) system. During 80 MeV proton beam irradiation to a polymethyl methacrylate (PMMA) phantom, imaging of prompt gamma photons was conducted by the developed gamma camera from one side of the phantom. Imaging of prompt x-rays was conducted by the developed x-ray camera from the other side. Induced positrons were measured by the developed dual-head PET system set on the upper and lower sides of the phantom.Main results. With the proposed triple-imaging-modality system, we could simultaneously image the prompt gamma photons and prompt x-rays during proton beam irradiation. Induced positron distributions could be measured after the irradiation by the PET system and the gamma camera. Among these imaging modalities, image quality was the best for the induced positrons measured by PET. The estimated ranges were actually similar to those imaged with prompt gamma photons, prompt x-rays and induced positrons measured by PET.Significance. The developed triple-imaging-modality system made possible to simultaneously measure the three different beam images. The system will contribute to increasing the data available for imaging in therapy and will contribute to better estimating the shapes or ranges of proton beam.


Assuntos
Terapia com Prótons , Prótons , Raios X , Elétrons , Terapia com Prótons/métodos , Tomografia Computadorizada por Raios X , Fótons/uso terapêutico , Raios gama , Imagens de Fantasmas , Método de Monte Carlo
10.
Phys Med Biol ; 69(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38198720

RESUMO

Objective. A discrete ordinates Boltzmann solver has recently been developed for use as a fast and accurate dose engine for calculation of photon and proton beams. The purpose of this study is to apply the algorithm to the inverse planning process for photons and protons and to evaluate the impact that this has on the quality of the final solution.Approach.The method was implemented into an iterative least-squares inverse planning optimiser, with the Boltzmann solver used every 20 iterations over the total of 100 iterations. Elemental dose distributions for the intensity modulation and the dose changes at the intermediate iterations were calculated by a convolution algorithm for photons and a simple analytical model for protons. The method was evaluated for 12 patients in the heterogeneous tissue environment encountered in radiotherapy of lung tumours. Photon arc and proton arc treatments were considered in this study. The results were compared with those for use of the Boltzmann solver solely at the end of inverse planning or not at all.Main results.Application of the Boltzmann solver at the end of inverse planning shows the dose heterogeneity in the planning target volume to be greater than calculated by convolution and empirical methods, with the median root-mean-square dose deviation increasing from 3.7 to 5.3 for photons and from 1.9 to 3.4 for proton arcs. Use of discrete ordinates throughout inverse planning enables homogeneity of target coverage to be maintained throughout, the median root-mean-square dose deviation being 3.6 for photons and 2.3 for protons. Dose to critical structures is similar with discrete ordinates and conventional methods. Time for inverse planning with discrete ordinates takes around 1-2 h using a contemporary computing environment.Significance.By incorporating the Boltzmann solver into an iterative least squares inverse planning optimiser, accurate dose calculation in a heterogeneous medium is obtained throughout inverse planning, with the result that the final dose distribution is of the highest quality.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Fótons/uso terapêutico , Pulmão , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
11.
Radiother Oncol ; 190: 109958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871751

RESUMO

Proton radiotherapy offers a dosimetric advantage compared to photon therapy in sparing normal tissue, but the clinical evidence for toxicity reductions in the treatment of head and neck cancer is limited. The Danish Head and Neck Cancer Group (DAHANCA) has initiated the DAHANCA 35 randomised trial to clarify the value of proton therapy (NCT04607694). The DAHANCA 35 trial is performed in an enriched population of patients selected by an anticipated benefit of proton therapy to reduce the risk of late dysphagia or xerostomia based on normal tissue complication probability (NTCP) modelling. We present our considerations on the trial design and a test of the selection procedure conducted before initiating the randomised study.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Fótons/uso terapêutico , Probabilidade , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica
12.
J Appl Clin Med Phys ; 25(2): e14240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150580

RESUMO

BACKGROUND: Monte Carlo (MC) simulations or measurements in anthropomorphic phantoms are recommended for estimating fetal dose in pregnant patients in radiotherapy. Among the many existing phantoms, there is no commercially available physical phantom representing the entire pregnant woman. PURPOSE: In this study, the development of a low-cost, physical pregnant female phantom was demonstrated using commercially available materials. This phantom is based on the previously published computational phantom. METHODS: Three tissue substitution materials (soft tissue, lung and bone tissue substitution) were developed. To verify Tena's substitution tissue materials, their radiation properties were assessed and compared to ICRP and ICRU materials using MC simulations in MV radiotherapy beams. Validation of the physical phantom was performed by comparing fetal doses obtained by measurements in the phantom with fetal doses obtained by MC simulations in computational phantom, during an MV photon breast radiotherapy treatment. RESULTS: Materials used for building Tena phantom are matched to ICRU materials using physical density, radiation absorption properties and effective atomic number. MC simulations showed that percentage depth doses of Tena and ICRU material comply within 5% for soft and lung tissue, up to 25 cm depth. In the bone tissue, the discrepancy is higher, but again within 5% up to the depth of 5 cm. When the phantom was used for fetal dose measurements in MV photon breast radiotherapy, measured fetal doses complied with fetal doses calculated using MC simulation within 15%. CONCLUSIONS: Physical anthropomorphic phantom of pregnant patient can be manufactured using commercial materials and with low expenses. The files needed for 3D printing are now freely available. This enables further studies and comparison of numerical and physical experiments in diagnostic radiology or radiotherapy.


Assuntos
Gestantes , Radiometria , Gravidez , Humanos , Feminino , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Simulação por Computador , Imagens de Fantasmas , Método de Monte Carlo , Dosagem Radioterapêutica
13.
Sci Rep ; 13(1): 21466, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052891

RESUMO

In modern radiotherapy with photons, the absorbed dose outside the radiation field is generally investigated. But it is well known that the biological damage depends not only on the absorbed dose but also on LET. This work investigated the dose-average LET (LΔ,D) outside several small radiotherapy fields to provide information that can help for better evaluating the biological effect in organs at risk close to the tumour volume. The electron fluences produced in liquid water by a 6 MV X-rays Varian iX linac were calculated using the EGSnrc Monte Carlo code. With the electron spectra, LΔ,D calculations were made for eight open small square fields and the reference field at water depths of 0.15 cm, 1.35 cm, 9.85 cm and 19.85 cm and several off-axis distances. The variation of LΔ,D from the centre of the beam to 2 cm outside the field's edge depends on the field size and water depth. Using radiobiological data reported in the literature for chromosomal aberrations as an endpoint for the induction of dicentrics determined in Human Lymphocytes, we estimated the maximum low-dose relative biological effectiveness, (RBEM) finding an increase of up to 100% from the centre of the beam to 2 cm from the field's edge.


Assuntos
Transferência Linear de Energia , Radiometria , Humanos , Raios X , Fótons/uso terapêutico , Método de Monte Carlo , Aceleradores de Partículas , Água , Dosagem Radioterapêutica
14.
Asian Pac J Cancer Prev ; 24(12): 4133-4138, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156848

RESUMO

PURPOSE/OBJECTIVE: The purpose of this study is to investigate the effect of treatment couch and immobilization devices on surface dose for megavoltage photon beams. MATERIAL/METHODS: Percentage surface dose (PSD) measurement was carried out in Elekta Synergy™ Linear accelerator using PTW Markus® Parallel plate ionization chamber of volume 0.05cm3 with water equivalent RW3 Slab phantom (PTW, Germany). The measurement depth was considered at 0.07mm. The reference PSD was measured at 0° gantry angle with 10×10cm2, 20×20cm2 and 30×30cm2 field sizes and 100cm SSD for 4MV, 6MV and 15MV photon beams. For comparison, PSD measurement was carried out at 180° gantry angle inclusion of treatment couch (TC), All in One positioning system (AIO - PS) and Vac lok Cushions (VLC). RESULTS: Beam angle at 0°, for field sizes 10×10cm2, 20×20cm2 and 30×30cm2, the PSD was observed as 30.9%, 40.5%, 48.7% for 4MV; 23.7%, 33.8%, 42.2% for 6MV; and 17.0%, 29.6%, 38.6% for 15MV respectively. Beam angle at 180° with TC, an increase in PSD by maximum of 65.0% for 4MV, 64.9% for 6MV and 55.9% for 15MV as compared to 0° angle. The PSD increased when beam angle was 180° with TC and AIO - PS were 65.0% for 4MV, 67.4% for 6MV, and 60.9% for 15MV than 0° angle. Similarly, increased PSD for beam angle at 180° with TC and VLC were 66.8% for 4MV, 66.8% for 6MV and 61.3% for 15MV as compared to 0° angle. CONCLUSION: For all three-photon energies, at 180° gantry angle, the PSD increased significantly in case of TC, VLC, and AIO - PS for all the field sizes as compared to gantry angle at 0°. It is necessary to consider TC, AIO - PS and VLC during dose calculation to ensure accuracy of patient treatment delivery.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Humanos , Fótons/uso terapêutico , Imagens de Fantasmas , Aceleradores de Partículas , Água , Dosagem Radioterapêutica
15.
Appl Radiat Isot ; 202: 111066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865066

RESUMO

This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Algoritmos , Fótons/uso terapêutico , Carmustina
16.
Acta Oncol ; 62(11): 1412-1417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815913

RESUMO

BACKGROUND: Patients with head and neck squamous cell carcinoma of unknown primary (HNCUP) are often treated with extensive radiotherapy (RT). Frequently, the bilateral nodal clinical target volume (nCTV) and the volumes of suspected mucosal primary sites (mCTV) of the pharynx and larynx is irradiated. This treatment is effective but toxic. New data suggest that omission of the contralateral nCTV and mCTV, results in few recurrences. The present study explores photon versus proton therapy, in the primary and recurrent setting. MATERIAL AND METHODS: An analysis of twelve patients previously treated for HNCUP was performed. A fictitious recurrence was defined in patients treated for unilateral disease. Independently a volumetric arc photon plan and an intensity-modulated proton plan was made for all cases and scenarios. RESULTS: Compared to the standard bilateral treatment this study shows that limiting the target to unilateral nCTV leads to a significant decrease in dysphagia of 18% and 17% and xerostomia of 4.0% and 5% for photon and protons, respectively. Comparing photon RT directly to proton RT shows a small and often insignificant gain, using protons for both bilateral and unilateral targets. Focusing on re-irradiation, benefits from using protons in both the primary setting and at re-irradiation were limited. However, using protons for re-irradiation only leads to a decrease in the tissue volume receiving a specific dose outside the target overlapping region, e.g., V90Gymean was 31, 25, and 22 cm3 for photons-photons, photons-protons, and protons-protons, respectively. For V100Gy of the ipsilateral carotid artery, no differences were observed. CONCLUSION: Omitting contralateral nCTV irradiation and mCTV irradiation will significantly reduce toxicity. The accumulated high dose volumes can be minimised using protons for re-irradiation. However, the use of protons for primary treatment provides limited benefit in most patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Primárias Desconhecidas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Fótons/uso terapêutico , Neoplasias de Cabeça e Pescoço/radioterapia
17.
Phys Med Biol ; 68(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816376

RESUMO

Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Elétrons , Radioterapia de Intensidade Modulada/métodos , Fótons/uso terapêutico
18.
Phys Med Biol ; 68(21)2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37774712

RESUMO

Objective.Higher energy and intensity radiotherapy beams are being used, in part, due to the increased spatial accuracy of treatments. However, higher intensity beams can result in a larger total dose error, motivating the increasing need for real-time dose monitoring. We are developing a thin, real-time upstream monolithic active pixel sensor based system for beam monitoring with excellent precision on measuring the beam shape. Here we present a method to additionally provide dosimetry by adding thin conversion material in strips to the surface of the detector, a grating structure.Approach.By modulating the thickness of the conversion material to minimally disturb the contamination electron signal while enhancing the photon signal, the difference in these signals can be used to extract a photon-only signal, and hence dose. The simulation software Gate, based on Geant4, is utilised to study whether well functioning gratings can be better made from aluminium or copper and to optimise the thickness of a copper grating.Main results.It is possible to enhance the photon signal by a factor 6.7 (7.7) compared to the bare sensor for a 5.8 (6.7) MV beam, without modulation of the signal due to beam electrons.Significance.The grating can be used to perform dosimetry in real-time using a thin upstream detector.


Assuntos
Cobre , Elétrons , Fótons/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica
19.
Curr Treat Options Oncol ; 24(11): 1524-1549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728819

RESUMO

OPINION STATEMENT: Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.


Assuntos
Neoplasias do Sistema Nervoso Central , Terapia com Prótons , Criança , Adulto , Humanos , Terapia com Prótons/efeitos adversos , Prótons , Neoplasias do Sistema Nervoso Central/radioterapia , Fótons/uso terapêutico , Sistema Nervoso Central , Dosagem Radioterapêutica
20.
In Vivo ; 37(5): 1951-1959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652498

RESUMO

BACKGROUND/AIM: To determine the interaction of gemcitabine in chemoradiotherapy with heavy carbon ions in vitro in a mucoepidermoid carcinoma (MEC) cell line. MATERIALS AND METHODS: The human lymphatic MEC metastasis cell line NCI-H292 was used. The cells were treated with photons, carbon ions, and gemcitabine. Survival fractions (SF), apoptosis, and cell cycle progression were analyzed. A paired two-sided t-test was used. Significance was defined as p<0.05. RESULTS: Cell proliferation assays showed a significant reduction in SF for combined photon chemoradiation versus photons only. The linear-quadratic fits of combined therapy with carbon ion dose of 0 to 2.5 Gy led to reductions of mean 15% in SF. The LD50 (lethal radiation dose required to reduce cell survival by 50%) for carbon ions only was 0.7 Gy and for carbon ions with gemcitabine 0.6 Gy. The LD50 for photons (with gemcitabine) was 2.8 Gy (2.0 Gy) and for carbon ions (with gemcitabine) 0.7 Gy (0.6 Gy), resulting in a relative biological effectiveness at 10% cell survival (RBE10) of 3.0 (2.7). Carbon ions and photons reduced S phase and increased G2/M phase cell distribution. Isolated treatment with gemcitabine as well as combination with photons led to prolonged S phase transit, whereas combined treatment with carbon ions led to early accumulation in G2/M phase. A significant increase in the sub-G1 population as a hint of relevant number of apoptotic cells was not observed. CONCLUSION: Gemcitabine showed radiosensitizing effects in combination with photons. The combination of gemcitabine and carbon ions had independent additive effects. Carbon ions only had a RBE10 of 3.0, compared to photons only. The combination of gemcitabine, photon, and carbon ions in patients with MEC seems promising and warrants further investigation.


Assuntos
Carcinoma Mucoepidermoide , Radioterapia com Íons Pesados , Humanos , Gencitabina , Desoxicitidina/farmacologia , Carcinoma Mucoepidermoide/tratamento farmacológico , Linhagem Celular Tumoral , Radioterapia com Íons Pesados/métodos , Quimiorradioterapia/métodos , Fótons/uso terapêutico , Carbono/uso terapêutico , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...